Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 69: 101682, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731652

RESUMO

OBJECTIVE: Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells. METHODS: We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding. RESULTS: Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFß-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion. CONCLUSIONS: Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the 'secretome' released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta , Fibrose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 42(7): e217-e227, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652755

RESUMO

BACKGROUND: An activated, proinflammatory endothelium is a key feature in the development of complications of obesity and type 2 diabetes and can be caused by insulin resistance in endothelial cells. METHODS: We analyzed primary human endothelial cells by RNA sequencing to discover novel insulin-regulated genes and used endothelial cell culture and animal models to characterize signaling through CXCR4 (C-X-C motif chemokine receptor 4) in endothelial cells. RESULTS: CXCR4 was one of the genes most potently regulated by insulin, and this was mediated by PI3K (phosphatidylinositol 3-kinase), likely through FoxO1, which bound to the CXCR4 promoter. CXCR4 mRNA in CD31+ cells was 77% higher in mice with diet-induced obesity compared with lean controls and 37% higher in db/db mice than db/+ controls, consistent with upregulation of CXCR4 in endothelial cell insulin resistance. SDF-1 (stromal cell-derived factor-1)-the ligand for CXCR4-increased leukocyte adhesion to cultured endothelial cells. This effect was lost after deletion of CXCR4 by gene editing while 80% of the increase was prevented by treatment of endothelial cells with insulin. In vivo microscopy of mesenteric venules showed an increase in leukocyte rolling after intravenous injection of SDF-1, but most of this response was prevented in transgenic mice with endothelial overexpression of IRS-1 (insulin receptor substrate-1). CONCLUSIONS: Endothelial cell insulin signaling limits leukocyte/endothelial cell interaction induced by SDF-1 through downregulation of CXCR4. Improving insulin signaling in endothelial cells or inhibiting endothelial CXCR4 may reduce immune cell recruitment to the vascular wall or tissue parenchyma in insulin resistance and thereby help prevent several vascular complications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Receptores CXCR4/metabolismo , Animais , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Insulina , Leucócitos/metabolismo , Camundongos , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CXCR4/genética
3.
Cell Res ; 29(7): 509-511, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160720
4.
Nat Commun ; 10(1): 1582, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952843

RESUMO

A major target of insulin signaling is the FoxO family of Forkhead transcription factors, which translocate from the nucleus to the cytoplasm following insulin-stimulated phosphorylation. Here we show that the Forkhead transcription factors FoxK1 and FoxK2 are also downstream targets of insulin action, but that following insulin stimulation, they translocate from the cytoplasm to nucleus, reciprocal to the translocation of FoxO1. FoxK1/FoxK2 translocation to the nucleus is dependent on the Akt-mTOR pathway, while its localization to the cytoplasm in the basal state is dependent on GSK3. Knockdown of FoxK1 and FoxK2 in liver cells results in upregulation of genes related to apoptosis and down-regulation of genes involved in cell cycle and lipid metabolism. This is associated with decreased cell proliferation and altered mitochondrial fatty acid metabolism. Thus, FoxK1/K2 are reciprocally regulated to FoxO1 following insulin stimulation and play a critical role in the control of apoptosis, metabolism and mitochondrial function.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Insulina/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Fatores de Transcrição Forkhead/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Mol Cell ; 69(5): 757-772.e7, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499132

RESUMO

As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial functions critically depend on nuclear gene expression and bidirectional mito-nuclear communication. However, mitochondria-to-nucleus communication pathways in mammals are incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a mediator of mitochondrial retrograde signaling and a transcriptional activator of nuclear-encoded mitochondrial genes. GPS2-regulated translocation from mitochondria to nucleus is essential for the transcriptional activation of a nuclear stress response to mitochondrial depolarization and for supporting basal mitochondrial biogenesis in differentiating adipocytes and brown adipose tissue (BAT) from mice. In the nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 demethylation and RNA POL2 activation through inhibition of Ubc13-mediated ubiquitination. These findings, together, reveal an additional layer of regulation of mitochondrial gene transcription, uncover a direct mitochondria-nuclear communication pathway, and indicate that GPS2 retrograde signaling is a key component of the mitochondrial stress response in mammals.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Transdução de Sinais/fisiologia , Células 3T3-L1 , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Camundongos , Mitocôndrias/genética , Regiões Promotoras Genéticas/fisiologia , Ativação Transcricional/fisiologia
6.
Mol Metab ; 6(1): 125-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123943

RESUMO

OBJECTIVE: Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. METHODS: The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). RESULTS: Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo. As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. CONCLUSIONS: Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células 3T3 , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/genética , Insulina/genética , Insulina/fisiologia , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Obesidade/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
7.
J Biol Chem ; 292(7): 2754-2772, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28039360

RESUMO

Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.


Assuntos
Linfócitos B/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Ubiquitinação
8.
Cell Rep ; 8(1): 163-76, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24953653

RESUMO

Timely and selective recruitment of transcription factors to their appropriate DNA-binding sites represents a critical step in regulating gene activation; however, the regulatory strategies underlying each factor's effective recruitment to specific promoter and/or enhancer regions are not fully understood. Here, we identify an unexpected regulatory mechanism by which promoter-specific binding, and therefore function, of peroxisome proliferator-activator receptor γ (PPARγ) in adipocytes requires G protein suppressor 2 (GPS2) to prime the local chromatin environment via inhibition of the ubiquitin ligase RNF8 and stabilization of the H3K9 histone demethylase KDM4A/JMJD2. Integration of genome-wide profiling data indicates that the pioneering activity of GPS2/KDM4A is required for PPARγ-mediated regulation of a specific transcriptional program, including the lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). Hence, our findings reveal that GPS2 exerts a biologically important function in adipose tissue lipid mobilization by directly regulating ubiquitin signaling and indirectly modulating chromatin remodeling to prime selected genes for activation.


Assuntos
Histona Desmetilases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Adipócitos/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Lipase/genética , Lipase/metabolismo , Lipólise/genética , Camundongos , Esterol Esterase/genética , Esterol Esterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...